
DAKOTA 101:  Wrap-Up 

 
http://dakota.sandia.gov 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s 

National Nuclear Security Administration under contract DE-AC04-94AL85000. 

SAND2012-7388P 



DAKOTA 101: Wrap-Up Topics 

• Review of DAKOTA’s scope and relevance 

• Recommended best practices 

• Sneak preview of advanced topics 

– Application interfacing 

– Parallelism 

– Hybrid and advanced algorithms 

– Parameter estimation 

• Resources for getting started 



DAKOTA Supports 

 

 

 

 

• Simulation-based engineering design: optimize virtual 

(computational) prototypes 

 

• Risk analysis and quantification of margins and uncertainty 

(QMU): assess the effect of parametric uncertainty on the 

probability of achieving desired system performance 

 

• Verification and validation: automate mesh convergence or 

solver tolerance studies, generate ensembles of possible 

simulations or statistics to compare to experimental data 

 

DAKOTA includes a wide array of algorithm capabilities 

to support engineering transformation through advanced 

modeling and simulation. 



DAKOTA Explores Model Parameter 

Space to Answer Engineering Questions 

Matlab ODE 

Epidemic 

Model 

disease kinetic 

parameters 

epidemic size, 

duration, severity  

Xyce, Spice 

Circuit 

Model 

resistances, 

via diameters 

voltage drop, peak 

current 

Abaqus, 

Sierra, CM/ 

CFD Model 

material props, 

boundary, initial 

conditions  

temperature, 

stress, flow rate 

Cantilever 

Beam Model 

load,  

modulus 

stress, 

displacement 

What is the best performing 

design or control? (optimization) 

How safe, reliable, robust, or variable is my 

system in the presence of uncertainties? (UQ) 

What are the crucial factors/parameters and 

how do they affect key metrics? (sensitivity) 

What models and parameters best 

match experimental data? (calibration) 



Basic Steps to Using DAKOTA 

1. Define analysis goals; understand how DAKOTA helps 

and select a method to use 

2. Access DAKOTA and understand help resources 

3. Workflow: create an automated workflow so DAKOTA 

can communicate with your simulation (Advanced Topic) 

– Parameters to model, responses from model to DAKOTA 

– Typically requires scripting (Python, Perl, Shell, Matlab) or 

programming (C, C++, Java, Fortran) 

– Workflow usually crosscuts DAKOTA analysis types 

4. DAKOTA input file: Jaguar GUI or text editor to configure 

DAKOTA to exercise the workflow to meet your goals 

– Tailor variables, methods, responses to analysis goals 

5. Run DAKOTA: command-line; text input / output 



Recommended Best Practices 

• Test the building blocks 

– Test response extraction and interfaces before using with 

DAKOTA 

– Do a parameter study with a simple model 

• Start with a parameter study 

– Screen problem characteristics: failure, smoothness, cost 

– Assess simulation robustness, verification, validity with 

respect to parameter variations 

• Solicit expert help in 

– Formulating problem 

– Selecting appropriate methods 

• Question the numbers 

– Sanity check aggregate/summary stats and results with more 

in-depth analyses of dakota-generated data. 

 



Discussion: 

DAKOTA Relevance Revisited 

• Discuss your revised impressions of DAKOTA’s 

relevance for your problems 

• With what kinds of applications, simulations, 

computational models would you use it 

• On what kinds of computer architecture would 

you want to use it (desktop workstation, Windows 

laptop, high-performance compute cluster) 

 



Sneak Preview  

of Advanced Topics 

• Application interfacing 

– Generic interface to simulations 

– Parameters in, responses out 

• Parallelism 

– Computing on multi-core desktops, clusters, and capability 

platforms 

– Different levels of parallelism 

• Hybrid and advanced algorithms 

– Time-tested and advanced algorithms 

– Strategies for combining methods 

• Parameter Estimation 

– Additional problem formulations 

– Future capabilities 

– User requirements 

 



Cantilever Beam 

Model 

DAKOTA Input File DAKOTA Output Files 

Code 

Input 

Code 

Output 

DAKOTA Parameters File 
{x1 = 123.4} 

{x2 = -33.3} 

Use APREPRO/DPREPRO 

to cut-and-paste x-values 

into code input file 

User-supplied automatic 

post-processing of code 

output data into f-values  

DAKOTA executes 
sim_code_script  

to launch a 

simulation job 

DAKOTA Results File 
999.888 f1 

777.666 f2 

DAKOTA Executable 

Method 

Variables Responses 

Interface 

Interface communicates through 

file system and user-supplied script 



Nested parallel models support large-scale applications and architectures. 

1. SMP/multiprocessor 

workstations: Asynchronous 

(external job allocation) 

2. Cluster of workstations: 

Message-passing 

(internal job allocation) 

3. Cluster of SMP’s: Hybrid 

(service/compute model) 

4. MPP: 

Internal MPI 

partitions 

(nested 

parallelism) 

Serial  

DAKOTA 

job1 &    job2 &    job3 &    job4 & 

master 
slave slave slave slave 

job1          job2          job3          job4 

master 
slave slave slave slave 

jobs &      jobs &      jobs &      jobs & 

Parallelism from a computing 

platform perspective 



1. Algorithmic coarse-grained parallelism: independent fn. 

Evaluations performed concurrently: 

• Gradient-based (e.g., finite difference gradients, speculative opt.) 

• Nongradient-based (e.g., GAs, PS, Monte Carlo) 

• Approximate methods (e.g., DACE) 

• Concurrent-method strategies (e.g., parallel B&B, island-model 

GAs, OUU) 

2. Algorithmic fine-grained parallelism: computing the internal 
linear algebra of an opt. algorithm in parallel (e.g., large-scale 
opt., SAND) 

3. Function evaluation coarse-grained parallelism: concurrent 
execution of separable simulations within a fn. eval. (e.g., 
multiple loading cases) 

4. Function evaluation fine-grained parallelism: parallelization of 
the solution steps within a single analysis code (e.g., SALINAS, 
MPSalsa) 

Parallelism from an 

algorithmic perspective 



Uncertainty 

• Second order probability 

• Uncertainty of optima 

 

Nonlinear least squares 

• Surrogate-based calibration 

• Model calibration under 

uncertainty 

Optimization 

• Surrogate-based: data fit, multifidelity, ROM 

• Mixed integer nonlinear programming (MINLP): 
PEBBL (parallel branch and bound) 

• Optimization under uncertainty 

– TR-SBOUU, RBDO (Bi-level, Sequential) 

– MCUU, PC-BDO, EGO/EGRA, Epistemic, … 

• Hybrids (e.g., global/local) 

• Pareto set 

• Multi-start 

• Multilevel methods 

Opportunities for Mixing 

and Matching Methods 

Strategies (general nesting, layering, sequencing and recasting 

facilities) combine methods to enable advanced studies: 

• opt within opt (multilevel opt & hierarchical MDO) 

• UQ within UQ (second-order probability) 

• UQ within opt (OUU) and NLS (MCUU) 

• opt within UQ (uncertainty of optima) 

with and without surrogate model indirection 

global  

optimization 

local 

opt.  

epistemic 

sampling 

aleatory 

sampling 

simulation 

local 

opt.  

local 

opt.  



Trust Region  

Surrogate-Based Minimization 

Data fit surrogates 

• Global: polynomials, splines, 

neural network, Kriging, RBFs 

• Local: 1st/2nd-order Taylor 

Data fits in SBO 

• Smoothing: extract global trend 

• DACE: limited # design vars 

• Must balance local consistency  

with global accuracy 

Multifidelity surrogates: 

• Coarser discretizations, 

looser conv. tols., reduced 

element order 

• Omitted physics: e.g., Euler 

CFD, panel methods 

Multifidelity SBO 

• HF scale better w/ des. vars. 

• Requires smooth LF model 

• May require design mapping 

• Correction quality is crucial 

Multi-fidelity 

ROM surrogates: 

• Spectral decomposition 

• POD/PCA w/ SVD 

• KL/PCE  (random fields, 

stochastic processes) 

ROMs in SBO 

• Key issue: parametrize  

(extended or spanning ROM) 

• Otherwise like data fit case 

emerging 

area 

ROM Data Fit 



Optimization Under Uncertainty 

O p t 

U Q  

S im 

{d } {S u }

{u} {R u }

min 

s.t. 

(nested paradigm) 

Rather than design and then post-process to evaluate uncertainty… 

actively design optimize while accounting for uncertainty/reliability metrics 

su(d), e.g., mean, variance, reliability, probability: 

13 design vars d:  Wi, Li, qi 

2 random variables x: ΔW, Sr 

σ 
σ 

-5.0 

simultaneously reliable and robust designs 

Bistable switch problem formulation (Reliability-Based Design Optimization): 

min 

s.t. 



Hybrid Optimization 

strategy, 

  graphics 

  hybrid sequential 

    method_list = 'GA' 'PS' 'NLP'  

method, 

  id_method = 'GA' 

  model_pointer = 'M1' 

  coliny_ea 

    seed = 1234 

    population_size = 10 

    verbose output 

method, 

  id_method = 'PS' 

  model_pointer = 'M1' 

  coliny_pattern_search stochastic 

    seed = 1234 

    initial_delta = 0.1 

    threshold_delta = 1.e-4 

    solution_accuracy = 1.e-10 

    exploratory_moves basic_pattern 

    verbose output 

method, 

  id_method = 'NLP' 

  model_pointer = 'M2' 

  optpp_newton 

    gradient_tolerance = 1.e-12 

    convergence_tolerance = 1.e-15 

    verbose output 

model, 

  id_model = 'M1' 

  single 

    variables_pointer = 'V1' 

    interface_pointer = 'I1' 

    responses_pointer = 'R1' 

model, 

  id_model = 'M2' 

  single 

    variables_pointer = 'V1' 

    interface_pointer = 'I1' 

    responses_pointer = 'R2' 

variables, 

  id_variables = 'V1' 

  continuous_design = 2 

    initial_point    0.6    0.7 

    upper_bounds     5.8    2.9 

    lower_bounds     0.5   -2.9 

    descriptors      'x1'   'x2' 

interface, 

  id_interface = 'I1' 

  direct 

    analysis_driver=  'text_book' 

responses, 

  id_responses = 'R1' 

  num_objective_functions = 1 

  no_gradients 

  no_hessians 

responses, 

  id_responses = 'R2' 

  num_objective_functions = 1 

  analytic_gradients 

  analytic_hessians 

Newton Method 

Evolutionary Algorithm: 

Generates Multiple Starting Points 

for Pattern Search 

Pattern Search Ensemble: 

Generates Starting Point 

for Newton Method to finish 



Multi-Objective Optimization 

May want tradeoffs between 

multiple objectives. 

Image from http://en.wikipedia.org/wiki/Pareto_efficiency 

strategy, 

  single_method 

  tabular_graphics_data 

method, 

  optpp_q_newton   

    output verbose  

    convergence_tolerance = 1.e-8 

variables, 

  continuous_design = 2 

    initial_point    0.9    1.1 

    upper_bounds     5.8    2.9 

    lower_bounds     0.5   -2.9 

    descriptors      'x1'   'x2' 

interface, 

  system asynchronous 

    analysis_driver=  'text_book' 

responses, 

  num_objective_functions = 3 

  multi_objective_weights = .7 .2 .1 

  analytic_gradients 

  no_hessians 



Efficient Global Reliability Analysis: 

GP Surrogate + MMAIS (B.J. Bichon) 

• Apply an EGO-like method to the equality-constrained optimization problem 

• In EGRA, an expected feasibility function balances exploration with local 

search near the failure boundary to refine the GP 

• Cost competitive with best MPP search methods, yet better probability of 

failure estimates; addresses nonlinear and multimodal challenges 

Gaussian process model  (level curves) of reliability limit state with 

10 samples    28 samples 

explore 

exploit 

failure  

region 

safe  

region 



Epistemic UQ:  

Nested (“Second-order” )Approaches 

• Propagate over epistemic and aleatory uncertainty, e.g.,  

UQ with bounds on the mean of a normal distribution (hyper-parameters) 

• Typical in regulatory analyses (e.g., NRC. WIPP) 

• Outer loop: epistemic (interval) variables, inner loop UQ over aleatory 

(probability) variables; potentially costly, not conservative 

• If treating epistemic as uniform, do not analyze probabilistically! 

0.00

0.25

0.50

0.75

1.00

C
u

m
 P

ro
b

2e+15 4e+15 6e+15 8e+15 1e+16 1.2e+16

E# Al Box n fluence
response metric 

“Envelope” of CDF traces represents response epistemic uncertainty  

epistemic 

sampling 

aleatory 

UQ 

simulation 

50 outer loop samples: 

 50 aleatory CDF traces 

 

bound probability 

or bound response 

 ULm ,

 ,~ mNu



Interval Estimation Approach 

(Probability Bounds Analysis) 

• Propagate intervals through simulation code 

• Outer loop:  determine interval on statistics, e.g., 

mean, variance 

– global optimization problem:  find max/min of 

statistic of interest, given bound constrained 

interval variables 

– use EGO to solve 2 optimization problems with 

essentially one Gaussian process surrogate 

• Inner loop:  Use sampling, PCE, etc., to determine 

the CDFs or moments with respect to the aleatory 

variables 

);(~

)|(min

EAA

UBELB

EASTAT
u

uuFu

uuu

uuf
E



);(~

)|(max

EAA

UBELB

EASTAT
u

uuFu

uuu

uuf
E



local or global  

optimization 

aleatory 

UQ 

simulation 



Many Types of Data-Fit Surrogates 

Polynomials are accurate in small 

regions and smooth noisy data. 

Splines can represent complex 

multi-modal surfaces and smooth 

noisy data. 

Gaussian processes are good 

predictors of mean and variance 

but can suffer from ill conditioning. 

Correction terms can be applied to 

surrogates for improved accuracy. 

linear 

quadratic 

cubic 

additive 

multiplicative 

convex combination trend correlation 

truncated power basis functions 



Parameter Estimation Topics 

What are the challenges you face in calibration? 

• Dealing with multiple data sets 

• Data processing and interpolation 

• Relevant metrics, statistics for comparing  

• Calibration vs. validation 

• Tools that would help your process 

 



Calibration Under Uncertainty 

Goal is now to match statistical 

moments of model over uncertain 

parameters with statistical 

moments of target. 

Requires a nested solution approach. 



Various Calibration Under 

Uncertainty Problems 

Matching Means 

Matching Means and Variances 

Matching Distributions 



Possible Advanced Topics 

(dictated by class interest) 

General features 
• Restart 

• Evaluation cache 

• Utilities in dakota_restart_util 

• Tabular graphics data 

• Failure capturing: abort, retry,  
recover, ignore 

• Constraint specification: linear, 
nonlinear; equality, inequality 

• Input/output scaling 

• Matlab interface 
 

Approximation methods 
• Global data fit surrogate methods 

(polynomials, MARS, Kriging, etc.) 

• Local surrogate methods (Taylor 
series, multipoint) 

• Hierarchical:  high/low fidelity models 

• Corrections 

Strategies/Advanced approaches 
• Nested models: OUU 

• Multi-objective (Pareto) optimization 

• Multistart; multi-level hybrid 

• Surrogate-based optimization (variety of 
constraint handling approaches): trust 
region; EGO/EGRA 

• Reliability-based design optimization 

• Advanced UQ topics:  polynomial chaos, 
second-order probability, Dempster-Shafer, 
surrogate-based UQ 

• AMPL: for analytic problems / algebraic 
mappings 
 

Parallel capabilities: message passing, 
asynchronous local, hybrid 

• Asynchronous evaluations  

• Dakota parallel, application serial 

• Dakota serial, application parallel 

• Multi-level parallel: concurrent iteration, 
concurrent function evaluations,  
concurrent analyses,  

• multiprocessor simulations 



Getting Started  

and Getting Help 

• Access a Sandia installation:  module avail dakota 

AMECH (CA), CEE (ESHPC/SCICO, NM), Computer clusters (both) 

or download 

 

• Supported on Linux/Unix, Mac OS X,  

Windows (no MinGW or Cygwin install required) 

 

• Tour DAKOTA web pages: http://dakota.sandia.gov 

– Extensive documentation (user, reference, developer)  

– Support mailing lists / archives 

– Software downloads: official releases and nightly stable 

(freely available worldwide via GNU GPL) 

 

• User’s Manual, Chapter 2: Tutorial with example input files 

 

• Support: 

– dakota-users@software.sandia.gov  

(DAKOTA team and internal/external user community) 

– dakota-help@sandia.gov  

(for SNL-specific or issues involving proprietary information) 



Course Learning Goals: 

Did we meet them? 

• Understand tools available in DAKOTA and the 

kind of design and analysis processes they can 

support 

• Requirements for getting started 

• See the mechanics of running DAKOTA 

• Where to get help using DAKOTA 

 

• What pieces are still missing or unclear? 

 


